N18/4/SPEXS/SP2/ENG/TZX/XX/M

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

November 2018

Sports, exercise and health science

Standard level

Paper 2

17 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

C	Questi	ion	Answers	Notes	Total
1.	1. a i gymnasts with high training level ✓		gymnasts with high training level \checkmark	Both gymnast and high required for [1] mark.	1
1.	а	ii	160–140 ✓ =20 «cm» ✓	Accept the subtraction in a different order. Accept correct calculation if (a)(i) is incorrect.	2
1.	а	111	 children who regularly participate in sport perform better on standing broad jump ✓ gymnasts perform better than children from other sports across all participation levels ✓ A high level/ >5hr per week of training appeared to have a significant effect on standing broad jump performance in every sport when compared to the other 2 groups/ the greater the training the greater the effect ✓ 	Accept other reasonable hypothesis.	2
1.	а	iv	low to moderate training level group did not show «statistically» <u>significant</u> results ✓ moderate and high training level group did show «statistically» significant_results/ showed they were significantly different to 95% ✓ low and high training level group did show «extremely statistically» <u>significant</u> results/ showed they were significantly different to 99% ✓	Accept response if "significant" is mentioned once but implied in the rest of the answers. Eg the low to moderate training level did not show significant results but the moderate and high training level group and the low and high training level group did.	3
1.	b	i	vertical jump/Sargent test 🗸	Accept valid tests eg Wingate, Margaria-Kalamen.	1
1.	b	ii	place a vertical marker from a standing position <i>OR</i> create a "baseline" measurement √	Despite current research award [1] mark for warm-up. Accept protocols for alternate valid test from (b)(i).	3 max

		perform a two-foot take-off ✓ bending knees/swinging the arms for the take-off ✓ place a vertical marker at the apex of the jump ✓ power is measured as the distance from standing position marker to marker at the apex of the jump✓		
2.	а	elasticity 🗸		1
2.	b	tendons connect muscles to bones ✓ ligaments connect bones to bones ✓ ligaments/ tendons stabilize joints ✓ tendons enable flexion and/ or extension of the joint✓	1 max for ligaments or tendons	2 max
2.	с	cycling produces higher maximal oxygen consumption/VO ₂ max values than arm ergometry \checkmark	Accept in the converse.	1
2.	d	 Gases/O₂ move from a high to low partial pressure / concentration gradient√ Oxygen partial pressure is higher in the lungs than in the capillary OR oxygen/O₂ moves from the lungs/alveoli to the pulmonary capillaries √ Gases/O₂ diffuse across the membranes / into blood√ The capillary and alveoli walls are 1 cell thick <which assists="" diffusion="" high="" in="" of="" rate="" the="">√</which> A large surface area increases diffusion rate√ the amount and rate of gas exchange that occurs across the membrane depends on the partial pressure of O₂, the thickness of the wall and the surface area <which fick's="" is="" law="">√</which> <98%> oxygen combines with hemoglobin <to form="" oxyhemoglobin="">√</to> 		4 max

2.	е		untrained	trained	
		stroke volume	lower	higher	\checkmark
		resting heart rate	higher	lower	✓
		<maximal> cardiac output</maximal>	lower	higher	\checkmark
		For a set task at submax level but SV will be higher in train		the same	✓
		and HR will be higher in unt	trained		✓

3.	а	changes the electrical/neural impulse into a chemical stimulus at the motor end plate OR	
		ACh is released when an action potential arrives at the motor end plate \checkmark	
		ACh binds to post synaptic receptors \checkmark	2 max
		increases membrane permeability to sodium ions/Na $^+$ 🗸	
		which causes Ca^{++} to be released <into cell="" muscle="" the=""> \checkmark ACh is broken down < by cholinesterase> to prevent continual muscle stimulation\checkmark</into>	
3.	b	Type I has a high density of capillaries and mitochondria√ high capillary density allows for increased oxygenation √ high mitochondrial density allows for increased use of oxygen <i>OR</i>	2 max
		high mitochondrial density allows for use of aerobic respiration «producing high amounts of ATP» \checkmark	
		both contribute to activities that require prolonged energy supply	

		OR		
		increases fatigue resistance \checkmark		
3.	С	insulin production is a response to high blood sugar/glucose levels ✓ insulin stimulates glucose uptake from the blood into skeletal muscle <i>OR</i>	Award [2 max] for either insulin or muscle contraction	
		insulin improves cell membrane permeability to glucose ✓ muscle contraction stimulates glucose uptake from the blood into skeletal muscle <i>OR</i>		3 max
		exercise improves cell membrane permeability to glucose \checkmark increased sensitivity leads to decreased insulin/glycogen production \checkmark		

Section B

Qı	uestion			Answers		
4.	а	Feature	Skeletal	Cardiac	Smooth	
		Movement	Voluntary	Involuntary	Involuntary	✓
		Structure	Cells are bound together into bundles by connective tissue known as fascia connected to bone by tendon	Structure is somewhere between skeletal and smooth. The branched fibres are not attached to bone	Cells are small and not attached to bone.	✓ ✓
		Striated	Yes	yes	no	✓
		Nucleus	Cells or fibres are multinucleate	Cells have a single nucleus.	Cells are single nucleus.	√
		Location	Found in skeletal muscles, e.g.: biceps, triceps	heart	hollow tubes such as digestive tract, blood vessels	✓
		Nervous stimulation	somatic motor neurons	autonomic nervous system	autonomic nervous system	✓

			Tension sensors Stretch receptors	Yes Yes	no no	no no	✓ ✓			
4.	b	i	motor programme is a set of movements stored as a whole in the memory «regardless of whether feedback is used in their execution» OR consists of an executive programme and subroutines√					1		
<u>4.</u>	<u>b</u>	Ш					Accept any valid example that refers to a gymnastics routine.	2 max		

4.	C	peripheral vascu during static exe contrast to dynar vessels ✓ during static exe	scle contraction during lar resistance differently ercise muscles create hig mic exercise which resu ercise there is an increas ontinuous pressure on th	gher pressure on the bl Its in lower pressure or se even in diastolic BP	ood vessels in h the blood because the	Award [2 max] if no explanation.	4 max
		Systolic BP Diastolic BP running higher than rest w~150 mm Hg» Little or no change from rest w~80 mm Hg» plank position much higher than rest w~200 mm Hg» higher than rest w~150 mm Hg»					
4.	d	✓ information can of information is brit relevant information detection proces	beccurs / detected by the come from intrinsic and iefly stored in short term tion is perceived/attende iss \checkmark iformation is passed on	extrinsic feedback/sou n sensory store ✓ ed to through selective	rces√ attention/signal		4 max

. е		during «approximately» the first minute all energy systems will be working \checkmark during an 800 m run, energy systems do not respond in a sequential manner \checkmark	Award [3 max] for each energy system and [5 max] if only 2 energy systems are discussed	
		ATP-CP system:		
		ATP production is from the breakdown of phosphocreatine <anaerobically> during initial seconds of activity \checkmark</anaerobically>		
		1 PC = 1 ATP ✓		
	stead	may contribute at other times of rapid change in energy demand <as a="" as="" athlete="" found="" into="" is="" long="" pace="" settles="" state="" steady="" the="" where=""> such as at the end of the race \checkmark</as>		
		can only last for 10–15 seconds/ short bursts ✓		
		Lactic Acid System:		6 ma
		partial breakdown of glucose anaerobically to produce ATP ✓		
		1 glucose molecule = $\langle \text{net} \rangle$ 2ATP \checkmark		
		will dominate after the ATP-PC system up to 1–2 minutes <while aerobic<="" td="" the=""><td></td><td></td></while>		
		system gets fully functional> \checkmark The lactic acid system will dominate at other times where effort increases towards		
		100% such as during the final sprint \checkmark		
		Aerobic System:		
		The aerobic system will dominate from approx. 1–2 minutes as the runner settles into their race pace \checkmark		
		1 glucose molecule = 38 ATP with the aerobic system \checkmark		
		Complete breakdown of glucose molecule in the presence of oxygen \checkmark		

5.	а	ventilation is «chemically» regulated by blood acidity levels/low pH \checkmark	Accept appropriately labelled diagram.	
		blood acidity levels increase/pH drops due to an increase in carbon dioxide levels \checkmark		3 max

		blood acidity levels are detected by chemoreceptors ✓ medulla oblongata/ANS/respiratory control centre receive information from receptors ✓ increased blood acidity «and information from the proprioceptors» increases the depth / rate of ventilation ✓	
5.	b	 deficit is calculated as the difference between the oxygen required for a given rate of work and the oxygen actually consumed √ deficit takes place during the initial stages of exercise √ muscles generate ATP through anaerobic pathways √ oxygen transport system is not immediately able to supply the needed quantity of oxygen to the active muscles <i>OR</i> oxygen consumption requires several minutes/time before a homeostatic level is reached √ homeostatic level is reached when the aerobic system meets the demands √ is repaid after exercise is finished√ 	3 max

5.	C	rehearsal ✓ information is processed mentally or physically ✓ coding ✓ labelling sets of information to make it easier to access ✓ brevity ✓ giving a learner a small amount of information at a time to avoid overload ✓ clarity ✓ keeping learning / teaching simple at the beginning ✓ avoiding to teach / learn similar but distinct items in the same session «to avoid interference with the memory of the other» ✓ chunking ✓ learners retain more if the information is chunked «instead of being presented as individual items» ✓ organization ✓ we remember more easily if we organize the way in which we are to learn and ensure that the information is meaningful ✓ association ✓ ensuring that new learning is linked to what players already know ✓ practice ✓ establishes memory trace/pathway ✓	Award [1 max] for a list of methods. Award [2 max] per memory aid. Description must correspond to the named method to obtain the mark.	4 max	
----	---	--	---	-------	--

5.	d	Angular momentum=moment of inertia x angular velocity ✓ angular momentum is conserved after push off/take off <i>OR</i> the magnitude of angular momentum remains constant ✓ with decrease in radius the body has lower moment of inertia ✓ the speed of rotation/rotational velocity increases with decreased radius/body being in a compact shape <i>OR</i> <i>eg</i> moving arms/legs closer in will increase the speed of rotation ✓ when an athlete wants to stop the spin, they increase the radius to decrease the rotational velocity ✓	Award [2 max] if no reference to an example is included.	4 max
5.	e	 sodium ions/Na⁺ enter the muscle and change the polarization in the myofibril ✓ the sarcoplasmic reticulum releases calcium ions ✓ calcium ions bind to troponin ✓ Tropomyosin/troponin complex exposes the binding site «on actin» ✓ myosin «head» creates a cross-bridge with the actin ✓ power stroke takes place ✓ z lines come closer together / H zone gets smaller✓ myosin releases actin if new ATP appears ✓ myosin head reattached further down the actin filament repeating the cycle < called the ratchet mechanism>√ process goes on until acetylcholine-esterase breaks the acetylcholine down ✓ 		6 max

6.	а	fibrous/ synarthrosis	no movement	√
		cartilaginous/ amphiarthrosis	slight movement	~
		synovial/ diarthrosis	freely movable	\checkmark

6.	b	Cardiovascular drift is an increase in heart rate during prolonged exercise <despite effort="" remaining="" same="" the=""></despite>		
		during prolonged exercise there is an increase in core temperature \checkmark		
		the rise in core temperature causes redistribution of blood to the periphery in order to cool \checkmark		
		the blood volume redistribution causes the heart to work harder in order to maintain muscle blood flow / energy demands \checkmark		3 max
		blood flow to skin increases and water is lost via sweating \checkmark		
		prolonged cooling/sweating causes a decrease in blood volume / increase in viscosity \checkmark		
		reduction in venous return/stroke volume causes the heart rate to increase to maintain cardiac output \checkmark		
6.	С	creatine phosphate/CP/PCr is a high-energy molecule/fuel \checkmark	Accept a reaction equation.	
		speed of breakdown is increased by creatine kinase \checkmark		
	CP is broken down to provide a phosphate molecule for the re-synthesis of A energy released is used to add Pi to ADP «endothermic reaction» \checkmark			
		reaction is a coupled reaction where one reaction is linked to another reaction \checkmark		4 max
		releases energy «exothermic reaction» and phosphate molecule/Pi \checkmark		
		1 PC = 1ATP✓		
		does not require oxygen √		
		is the first system to provide ATP / occurs in the first 10–15sec of exercise \checkmark		

6.

6.	e	psychological refractory period/PRP is the increase in reaction time to a second stimulus caused when the second stimulus has been delivered while the performer is responding to the first stimulus OR it is the time delay in reaction time caused by the arrival of a second stimulus before the first is processed \checkmark this is believed to take place due to brain processing information on a single track/using the single channel mechanism \checkmark in sports you can use PRP as an advantage by introducing a dummy stimulus before the real movement \checkmark strengths: can be used to help a performer have greater chances of success <i>eg</i> pretending to pass / run one direction then quickly changing to pass / run the other way \checkmark provides a performer with a greater range of options in their play \checkmark external noise <i>eg</i> other players calling, or crowd noise can enhance the effectiveness of the PRP \checkmark the more options that a player has will increase the reaction time to the stimulus $<$ Hick's law> \checkmark limitations:	Award [2 max] for an annotated diagram of the single channel hypothesis for mark points 1 and 2. Award 4 [max] if only strengths or limitations provided Award [4 max] if no example given	6 max
		 if a performer uses it too often, they will become predictable and this limits success PRP may be reduced by anticipation / early cue detection / effective coach analysis / practicing «open» skills ✓ anxiety might make the performer get the timing wrong and thus the PRP is not effective ✓ 	;	